Dimer-dimer zero crossing in a one-dimensional mixture

Alexandre Pricoupenko / Supervisor: Dmitry Petrov

LPTMS
Hadrons and Nuclear Physics meet ultracold atoms, 2018

Motivation

- Bosonic mixtures of two different components with competing attractive inter and repulsive intra species interaction caught recently a great deal of attention.
- Ability to form self trapped liquid droplets.
- Finite piece of liquid in equilibrium with vacuum without any external potential!
- Many possible applications of these droplets. (cooling, ...)
- Direct manifestation of Beyond-Mean-Field (BMF) effects.

Mixture \& Stability

- Mixture : $2 \neq$ particles (\uparrow, \downarrow) of equal masses and same densities.
- Interactions $\left(g_{\uparrow \downarrow}, g_{\uparrow \uparrow}, g_{\downarrow \downarrow}\right)$ with attractive inter and repulsive intra species. What about stability (i.e. no collapse) ?

Mixture \& Stability

- Mixture : $2 \neq$ particles (\uparrow, \downarrow) of equal masses and same densities.
- Interactions $\left(g_{\uparrow \downarrow}, g_{\uparrow \uparrow}, g_{\downarrow \downarrow}\right)$ with attractive inter and repulsive intra species. What about stability (i.e. no collapse) ?

... In 1D, close to this MF collapse line, on the MF repulsive side the mixture liquefy !
\rightarrow Comes from an effectively attractive BMF term.

A Brief Insight

Overview of one dimensional Bose-Bose mixture at this stage

- Increasing $g_{\uparrow \uparrow} g_{\downarrow \downarrow} / g_{\uparrow \downarrow}^{2}$
makes the system more dilute which in one dimension leads to stronger correlations.
- For $g_{\sigma \sigma} \gg\left|g_{\uparrow \uparrow}\right|$, ,the system becomes a gas of $\uparrow \downarrow$ dimers.(Mapping with Gaudin-Yang model which has no other BS than $\uparrow \downarrow$ dimers.)

Goal

By decreasing the ratio $g_{\uparrow \uparrow} g_{\downarrow \downarrow} / g_{\uparrow \downarrow}^{2}$
\rightarrow Find the line curve in the plane $\left\{g_{\uparrow \uparrow} /\left|g_{\uparrow \downarrow}\right|, g_{\downarrow \downarrow} /\left|g_{\uparrow \downarrow}\right|\right\}$ where the dimer-dimer interaction vanishes $\left(a_{d d}=\infty\right)$.

Outline

(1) Reminders about 1D systems
(2) The Four-Body System
(3) Results
(4) Discussions
(5) Conclusion

Reminders about 1D systems

Two-body scattering theory in 1D

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+V(|x|)\right] \Psi(x)=E \Psi(x) \tag{1}
\end{equation*}
$$

- $|x| \gg R_{e} \rightarrow \Psi(x)=A \sin (k|x|+\delta(k))$
- δ is the so-called phase shift
- k is the relative momentum and verify $E=\hbar^{2} k^{2} / 2 \mu$.

Two-body scattering theory in 1D

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+V(|x|)\right] \Psi(x)=E \Psi(x) \tag{1}
\end{equation*}
$$

- $|x| \gg R_{e} \rightarrow \Psi(x)=A \sin (k|x|+\delta(k))$
- δ is the so-called phase shift
- k is the relative momentum and verify $E=\hbar^{2} k^{2} / 2 \mu$.

Scattering length a

- $\lim _{x \rightarrow 0} \Psi(x) \propto|x|-a(k)$ where $a(k)=-\frac{\sin (\delta)}{k \cos (\delta)}$
- Small momenta $k R_{e} \ll 1$, we define the scattering length a :

$$
a=\lim _{k \rightarrow 0} a(k)=\lim _{k \rightarrow 0}-\frac{\tan \delta}{k}
$$

- Expansion : $k \cot \delta(k)=-1 / a+\left(r_{e} / 2\right) k^{2}+\ldots$

Two-body contact interaction

- Short range interactions between particle modeled by a δ-potential such that: $V_{i j}(x)=g_{i j} \delta\left(x_{i j}\right)$.
- It's the so-called Zero-Range Approximation, valid when $\left|\lambda_{d B}\right| \gg R_{e}$
- One can show with the logarithm derivative of $\Psi_{\mid 0}$ that the constant interaction $g_{i j}$ is related to the scattering length.

$$
g_{i j}=-\frac{\hbar^{2}}{\mu a_{i j}}
$$

- If $g_{i j}>0$ one deals with a repulsive potential, whereas for $g_{i j}<0$ we deal with an attractive potential.
- If $g_{i j}<0$ a bound state (BS) exists.

$$
\Psi_{B S} \propto e^{-|x| / a_{i j}} \quad E_{B S}\left(\left\{m_{1}, m_{2}\right\}, g_{i j}\right)=-\frac{\hbar^{2}}{2 \mu a_{i j}^{2}}
$$

$\rightarrow a_{i j}$ can be seen as the size of the bound state.

The Four-Body system

Schrödinger's equation

Schrödinger's equation

Schrödinger's equation

$$
\begin{align*}
\left(-\nabla_{\mathbf{X}}^{2}-E\right) \Psi\left(r_{1}, r_{2}, R\right)= & {\left[-g_{\uparrow \downarrow}\left(\delta\left(r_{1}\right)+\delta\left(r_{2}\right)+\delta\left(r_{+}\right)+\delta\left(r_{-}\right)\right)\right.} \tag{2}\\
& \left.-g_{\uparrow \uparrow} \delta\left(r_{\uparrow \uparrow}\right)-g_{\downarrow \downarrow} \delta\left(r_{\downarrow \downarrow}\right)\right] \Psi\left(r_{1}, r_{2}, R\right)
\end{align*}
$$

Skorniakov-Ter-Martirosian (STM)

We introduce the function ${f_{\uparrow \downarrow} \text { which corresponds by definition to the }}_{\text {w }}$ wavefunction Ψ when one pair $\{\uparrow \downarrow\}$ coincide.

$$
\begin{equation*}
\lim _{r_{1} \rightarrow 0} \Psi\left(r_{1}, r_{2}, R\right)=f_{\uparrow \downarrow}\left(r_{2}, R\right) \tag{3}
\end{equation*}
$$

We do the same for $r_{\uparrow \uparrow} \rightarrow 0$ and then $r_{\downarrow \downarrow} \rightarrow 0:$

$$
\begin{align*}
& \lim _{r_{\uparrow \uparrow} \rightarrow 0} \Psi\left(r_{1}, r_{2}, R\right)=f_{\uparrow \uparrow}\left(r_{\downarrow \downarrow}, R_{0}\right) \tag{4}\\
& \lim _{r_{\downarrow \downarrow} \rightarrow 0} \Psi\left(r_{1}, r_{2}, R\right)=f_{\downarrow \downarrow}\left(r_{\uparrow \uparrow}, R_{0}\right) \tag{5}
\end{align*}
$$

STM Equation

$$
\begin{align*}
\left(\mathbf{P}^{2}-E\right) \tilde{\Psi}\left(p_{1}, p_{2}, p\right)= & -g_{\uparrow \downarrow} \tilde{f}_{\uparrow \downarrow}\left(p_{2}, p\right)-e_{\uparrow \uparrow} e_{\downarrow \downarrow} g_{\uparrow \downarrow} \tilde{f}_{\uparrow \downarrow}\left(p_{1},-p\right) \\
& -e_{\downarrow \downarrow} g_{\uparrow \downarrow} \tilde{f}_{\uparrow \downarrow}\left(\frac{p_{1}+p_{2}-\sqrt{2} p}{2}, \frac{p_{1}-p_{2}}{\sqrt{2}}\right) \\
& -e_{\uparrow \uparrow} g_{\uparrow \downarrow} \tilde{f}_{\uparrow \downarrow}\left(\frac{p_{1}+p_{2}+\sqrt{2} p}{2}, \frac{p_{2}-p_{1}}{\sqrt{2}}\right) \tag{6}\\
& -g_{\uparrow \uparrow} \tilde{f}_{\uparrow \uparrow}\left(\frac{p_{2}-p_{1}+\sqrt{2} p}{2}, \frac{p_{1}+p_{2}}{\sqrt{2}}\right) \\
& -g_{\downarrow \downarrow} \tilde{f}_{\downarrow \downarrow}\left(\frac{p_{1}-p_{2}+\sqrt{2} p}{2}, \frac{p_{1}+p_{2}}{\sqrt{2}}\right)
\end{align*}
$$

Where $\mathbf{P}=\left\{p_{1}, p_{2}, p\right\}$ corresponds to a 3 D vector in momentum space. Idea is then to end up with a system of three coupled integral equations for $\left\{\tilde{f}_{\uparrow \downarrow}, \tilde{f}_{\uparrow \uparrow}, \tilde{f}_{\downarrow \downarrow}\right\}$ since we can show that :

$$
\left\{\begin{array}{l}
\tilde{f}_{\uparrow \downarrow}(k, q)=\int \frac{d u}{2 \pi} \tilde{\Psi}(u, k, q) \tag{7}\\
\tilde{f}_{\uparrow \uparrow}(k, q)=\int \frac{d u}{\pi} \tilde{\Psi}(u, \sqrt{2} q-u, \sqrt{2}(k+u)-q) \\
\tilde{f}_{\downarrow \downarrow}(k, q)=\int \frac{d u}{\pi} \tilde{\Psi}(u, \sqrt{2} q-u, \sqrt{2}(k-u)+q)
\end{array}\right.
$$

Dimer-dimer Scattering

- We fix $g_{\uparrow \downarrow}<0$ (attractive interspecies).
- The total energy is $E=-2\left|\epsilon_{\uparrow \downarrow}\right|+\epsilon_{0}$, where $\epsilon_{\uparrow \downarrow}=-\hbar^{2} / m a_{\uparrow \downarrow}^{2}$ and ϵ_{0} is the dimer-dimer collisional energy.
- Starting from gas of dimers $\uparrow \downarrow$ (Yang Gaudin), we decrease the ratio $g_{\uparrow \uparrow} g_{\downarrow \downarrow} / g_{\uparrow \downarrow}^{2}$ and look at zero-collision d-d energy to extract $a_{d d} / a_{\uparrow \downarrow}$.
- By substituting $\tilde{f}_{\uparrow \downarrow}$ by an appropriate expression, homogeneous STM equation becomes an inhomogeneous equation $M X=Y$
- Leads to a linear problem that we put on the grid to extract $a_{d d} / a_{\uparrow \downarrow}$.

Dimer-dimer Scattering

- We fix $g_{\uparrow \downarrow}<0$ (attractive interspecies).
- The total energy is $E=-2\left|\epsilon_{\uparrow \downarrow}\right|+\epsilon_{0}$, where $\epsilon_{\uparrow \downarrow}=-\hbar^{2} / m a_{\uparrow \downarrow}^{2}$ and ϵ_{0} is the dimer-dimer collisional energy.
- Starting from gas of dimers $\uparrow \downarrow$ (Yang Gaudin), we decrease the ratio $g_{\uparrow \uparrow} g_{\downarrow \downarrow} / g_{\uparrow \downarrow}^{2}$ and look at zero-collision d-d energy to extract $a_{d d} / a_{\uparrow \downarrow}$.
- By substituting $\tilde{f}_{\uparrow \downarrow}$ by an appropriate expression, homogeneous STM equation becomes an inhomogeneous equation $M X=Y$
- Leads to a linear problem that we put on the grid to extract $a_{d d} / a_{\uparrow \downarrow}$.

Goal reminder

Find the line curve in the plane $\left\{g_{\uparrow \uparrow} /\left|g_{\uparrow \downarrow}\right|, g_{\downarrow \downarrow} /\left|g_{\uparrow \downarrow}\right|\right\}$ where the dimer-dimer interaction vanishes.

Results

Overview of the Bose-Bose mixture in the plane $\left\{g_{\uparrow \uparrow} /\left|g_{\uparrow \downarrow}\right|, g_{\downarrow \downarrow} /\left|g_{\uparrow \downarrow}\right|\right\}$

$\underline{\text { Overview in symmetric case }\left(g_{\uparrow \uparrow}=g_{\downarrow \downarrow}\right) \text { in function of } \alpha=g_{\uparrow \uparrow} /\left|g_{\uparrow \downarrow}\right|}$

Attractive Domain Repulsive Domain

- Interaction between dimers become attractive when $\alpha<\alpha *$
- 3 known integrable cases : $\alpha \rightarrow+\infty, \alpha=-1, \alpha \rightarrow-\infty$

Overview of the dimerized symmetric Bose-Bose mixture in function of α

$$
\mathrm{g}_{d d}=0 \text { for } \alpha^{*}=2.2
$$

Discussions

Soliton?

- Consider $N_{d}>2$ dimers close to the dimer-dimer zero crossing line in the attractive regime where $a_{d d} \gg a_{\uparrow \downarrow} \sim r_{e}$.

Soliton ?

- Consider $N_{d}>2$ dimers close to the dimer-dimer zero crossing line in the attractive regime where $a_{d d} \gg a_{\uparrow \downarrow} \sim r_{e}$.

$$
\begin{aligned}
& \frac{\text { Soliton }}{} \begin{array}{|}
\mathrm{E}_{N_{d}}=\frac{-g_{d d}^{2} N_{d}\left(N_{d}^{2}-1\right)}{12} \\
\mathrm{~L} \sim a_{d d} / N_{d} \\
\text { Breaks down for } N_{d} \rightarrow+\infty(c f . \\
\text { above the collapse line) }
\end{array}
\end{aligned}
$$

\rightarrow Ground State ?

MF \& 3-Body Repulsive Interaction

- Idea : A liquid state which is a result of a competition between twoand three- dimer forces ? $\left(g_{d d}<0\right.$ and assume $\left.g_{3}>0\right)$
- MF (for dimers) treatment (cf. Bulgac) :

$$
\begin{equation*}
\epsilon:=E_{N_{d}} / N_{d}=g_{d d} n_{d} / 2+g_{3} n_{d}^{2} / 6 \tag{8}
\end{equation*}
$$

Minimum : $\mathrm{n}_{d}^{0}=-3 g_{d d} / 2 g_{3}$

- Applicability: Interaction energy shift much smaller than the energy scale $E \sim n_{d}{ }^{2} \rightarrow\left\{a_{d d} n_{d} \gg 1\right.$ and $\left.g_{3} \ll 1\right\}$
- Both of these conditions (at n_{d}^{0}) lead to $\mathrm{g}_{3} \ll 1$

About 3-Body Interaction

- What is this g_{3} ?

$$
\text { 3-Body in 1D } \rightarrow \text { 2-Body in 2D }, \quad \Psi_{3} \propto \ln \left(\rho / a_{3}\right), a_{3}>0
$$

- 3-dimer effective potential taken as:

$$
\begin{equation*}
g_{3}=\frac{\sqrt{3} \pi}{2 \ln \left(2 e^{-\gamma} / a_{3} \kappa\right)} \tag{9}
\end{equation*}
$$

- κ is the typical momentum of the system
- In the leading order of $g_{3} \ll 1$, by assuming that $a_{3} \sim a_{\uparrow \downarrow}$, we have in the leading order of g_{3} :

$$
g_{3}=\sqrt{3} \pi / 2 \ln \left(a_{d d} / a_{\uparrow \downarrow}\right) \ll 1
$$

$$
n_{d}^{0}=\left(\sqrt{3} / \pi a_{d d}\right) \ln \left(a_{d d} / a_{\uparrow \downarrow}\right) \quad, \quad \mu=\epsilon=\left(\sqrt{3} / 4 \pi a_{d d}^{2}\right) \ln \left(a_{d d} / a_{\uparrow \downarrow}\right)
$$

Different regimes

- In the region $a_{3} \sim a_{\uparrow \downarrow} \ll n_{d}^{-1}$, precisely $1 / \ln \left(a_{\uparrow \downarrow} n_{d}\right) \sim 1 / \ln \left(a_{3} n_{d}\right) \ll 1$

Crossover : Soliton to Liquid Droplet when increasing N_{d}

- Dimer-dimer effective range correction (per dimer) ?
\rightarrow Scales as $r_{e} \epsilon n_{d} \sim \epsilon g_{3}^{-1} e^{-\sqrt{3} \pi / 2 g_{3}}$ smaller than any powers of g_{3}
- Case $a_{\uparrow \downarrow} \ll 1 / n_{d} \ll a_{3}$?
\rightarrow Weak 3-body attraction leads to high density phase (cf. Nishida)
\rightarrow Solution breaks down for same reasons than soliton.

Conclusion

Summary

1. We derived STM equations for the 4 body-problem in the case of a mixture with intercomponent dimers.
2. We implemented these equations numerically and verify our numerical method in known integrable cases.
3. We calculated the line where the dimer-dimer interaction vanishes (particularly in the Bose symmetric case $\alpha^{*}=2.2$ and in the BF case $\left.g_{B B}=0.575\left|g_{F B}\right|\right)$
4. For a weak dimer-dimer interaction, we predict a dilute dimerized liquid phase stabilized against collapse by a repulsive three-dimer force.

Open questions

Solve the three-dimer problem / Three dimer zero crossing point ? / Liquid density imbalanced / Pentamer ...

Bose-Fermi Mapping

- In 1D, one can map the case of N impenetrable bosons with an ideal Fermi gas of N particles.
- For fermions, thanks to Pauli principle, the wavefunction vanishes with contact of intraspecies.
- For bosons, if we impose an infinite contact repulsion (impenetrable bosons), we reproduce artificially the Pauli principle.

$$
\left\{\begin{array}{l}
\Psi_{B}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=A\left(x_{1}, \ldots, x_{n}\right) \Psi_{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{10}\\
A\left(x_{1}, \ldots, x_{n}\right)=\prod_{i>j} \operatorname{sgn}\left(x_{i}-x_{j}\right)
\end{array}\right.
$$

\rightarrow Same characteristic such as energy.

- This mapping has been at center of investigations in 1-dimension, in our case, we will resume this by :

$$
\begin{equation*}
\Psi_{B}, \quad g_{\uparrow \uparrow}=g_{\downarrow \downarrow}=+\infty \quad \Leftrightarrow \quad \Psi_{F}, \quad g_{\uparrow \uparrow}=g_{\downarrow \downarrow}=0 \tag{11}
\end{equation*}
$$

Trimer Threshold

- Let us consider the $\uparrow \uparrow \downarrow$ combination (or equivalently, $\downarrow \downarrow \uparrow$) and apply STM.
- In the case $g_{\uparrow \downarrow}<0, \uparrow \uparrow \downarrow$
is always bound except in the limit $g_{\uparrow \uparrow}=+\infty$ where $\left(\epsilon_{\uparrow \uparrow \downarrow}-\epsilon_{\uparrow \downarrow}\right)=0$ and $a_{a d}$ diverges.
- The trimer $\uparrow \uparrow \downarrow$ can be formed if $\epsilon_{\uparrow \uparrow \downarrow}<E=-2\left|\epsilon_{\uparrow \downarrow}\right|$ for zero dimer-dimer collision energy.

Trimer Threshold

- Let us consider the $\uparrow \uparrow \downarrow$ combination (or equivalently, $\downarrow \downarrow \uparrow$) and apply STM.
- In the case $g_{\uparrow \downarrow}<0, \uparrow \uparrow \downarrow$ is always bound except in the limit $g_{\uparrow \uparrow}=+\infty$ where $\left(\epsilon_{\uparrow \uparrow \downarrow}-\epsilon_{\uparrow \downarrow}\right)=0$ and $a_{a d}$ diverges.
- The trimer $\uparrow \uparrow \downarrow$ can be formed if $\epsilon_{\uparrow \uparrow \downarrow}<E=-2\left|\epsilon_{\uparrow \downarrow}\right|$ for
 zero dimer-dimer collision energy.

Trimer Threshold

- Let us consider the $\uparrow \uparrow \downarrow$ combination (or equivalently, $\downarrow \downarrow \uparrow$) and apply STM.
- In the case $g_{\uparrow \downarrow}<0, \uparrow \uparrow \downarrow$ is always bound except in the limit $g_{\uparrow \uparrow}=+\infty$ where $\left(\epsilon_{\uparrow \uparrow \downarrow}-\epsilon_{\uparrow \downarrow}\right)=0$ and $a_{a d}$ diverges.
- The trimer $\uparrow \uparrow \downarrow$ can be formed if
$\epsilon_{\uparrow \uparrow \downarrow}<E=-2\left|\epsilon_{\uparrow \downarrow}\right|$ for
 zero dimer-dimer collision energy.

$$
\epsilon_{\uparrow \uparrow \downarrow}=-2\left|\epsilon_{\uparrow \downarrow}\right| \Leftrightarrow g_{\uparrow \uparrow}=0.0738\left|g_{\uparrow \downarrow}\right|
$$

Case $\alpha \rightarrow+\infty$

- Thanks to the BFM, the case of infinite repulsion between intracomponents lead to study interacting two species Fermi gas.
- Corresponds equivalently in this study to the fermionic case where $g_{\uparrow \uparrow}=g_{\downarrow \downarrow}=0 \rightarrow$ We end up with 1 Integral equation.
- Four attractively interacting fermions in 1D \rightarrow Integrable case (solved by C. Mora) :
- Scattering properties of the two dimers ($\uparrow \downarrow$) system are described by the dimer-dimer scattering length $a_{d d}$.

$$
\begin{equation*}
a_{d d}=0.5 a_{\uparrow \downarrow} \tag{12}
\end{equation*}
$$

Case $\alpha \rightarrow-\infty$

Intraspecies are infinitely attractive : $g_{\uparrow \uparrow}=g_{\downarrow \downarrow}=-\infty$
\rightarrow Four-body bound state composed of two intracomponent dimers.

$$
\begin{gather*}
{\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+4 g_{\uparrow \downarrow} \delta(x)\right] \chi_{r}=E_{B S} \chi_{r}} \tag{13}\\
E=-\frac{2}{m a_{\uparrow \uparrow}{ }^{2}}-E_{B S}\left(\{2 m, 2 m\}, g=4 g_{\uparrow \downarrow}\right) \tag{14}\\
E /\left|\epsilon_{\uparrow \downarrow}\right|=-2 \alpha^{2}-32 \tag{15}
\end{gather*}
$$

Case $\alpha=-1$

- Known as Lieb-Liniger / Mc Guire model
- Take N as the arbitrary number of particles of equal masses M all interacting via one another via equal strength δ-function potentials.

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 M} \sum_{i=1}^{N} \frac{d^{2}}{d x_{i}^{2}}+C \sum_{i>j} \sum_{j=1}^{N} \delta\left(x_{i}-x_{j}\right)\right] \Psi=E \Psi \tag{16}
\end{equation*}
$$

- We put $\hbar=M=1$ and $g=-\sqrt{2} C$ and consider the case of a δ-attractive potential between particles. We end up with the energy of the N -body bound state :

$$
\begin{equation*}
E=-\frac{g^{2}}{48} N\left(N^{2}-1\right) \tag{17}
\end{equation*}
$$

In our units for our four-body problem:

$$
\begin{equation*}
E(N=4)=-10\left|\epsilon_{\uparrow \downarrow}\right| \tag{18}
\end{equation*}
$$

Case $\alpha \simeq \alpha^{*}$

- Appearance of a weakly bound four-body bound state :

$$
E=-\frac{2}{m a_{\uparrow \downarrow}{ }^{2}}-E_{B S}\left(\{2 m, 2 m\}, g_{d d}\right)
$$

- Where $g_{d d}$ is the strength of interaction between the two intercomponent dimers and which verify $g_{d d}=-1 / a_{d d}$.

$$
\begin{equation*}
E /\left|\epsilon_{\uparrow \downarrow}\right|=-2-\frac{a_{\uparrow \downarrow}{ }^{2}}{a_{d d}{ }^{2}} \tag{19}
\end{equation*}
$$

- One can interest to the function A defined by :

$$
\begin{equation*}
A(\alpha)=\sqrt{2} \sqrt{\frac{E}{\epsilon_{\uparrow \downarrow}}-2} \underset{\alpha \simeq \alpha^{*}}{=} \frac{a_{\uparrow \downarrow}}{a_{d d}} \tag{20}
\end{equation*}
$$

- $A\left(\alpha^{*}\right)$ passes through zero when $a_{d d}$ diverge, namely for the ratio α^{*} of the gas-liquid transition :

$$
\begin{equation*}
A\left(\alpha^{*}\right)=0 \Leftrightarrow a_{d d}=\infty \Leftrightarrow g_{d d}=0 \tag{21}
\end{equation*}
$$

