

European Research Council

Dimer-dimer zero crossing in a one-dimensional mixture

Alexandre Pricoupenko / Supervisor : Dmitry Petrov

LPTMS

Hadrons and Nuclear Physics meet ultracold atoms, 2018

- Bosonic mixtures of two different components with competing attractive inter and repulsive intra species interaction caught recently a great deal of attention.
- Ability to form self trapped liquid droplets.
- Finite piece of liquid in equilibrium with vacuum without any external potential !
- Many possible applications of these droplets. (cooling, ...)
- Direct manifestation of Beyond-Mean-Field (BMF) effects.

Mixture & Stability

- Mixture : $2 \neq$ particles (\uparrow , \downarrow) of equal masses and same densities.
- Interactions (g_{↑↓}, g_{↑↑}, g_{↓↓}) with attractive inter and repulsive intra species. What about stability (i.e. no collapse) ?

Mixture & Stability

- Mixture : 2 \neq particles ($\uparrow,\downarrow)$ of equal masses and same densities.
- Interactions (g_{↑↓}, g_{↑↑}, g_{↓↓}) with attractive inter and repulsive intra species. What about stability (i.e. no collapse) ?

 \ldots In 1D, close to this MF collapse line, on the MF repulsive side the mixture liquefy !

 \rightarrow Comes from an effectively attractive BMF term.

Repulsion)|(

$$E \propto n^2$$
 \bigcirc)|(\bigcirc
 $E \propto -n^2$ \bigcirc)|(\bigcirc
 \bigcirc)|(\bigcirc
 \bigcirc \bigcirc \bigcirc

MF

Overview of one dimensional Bose-Bose mixture at this stage

- Increasing g_{↑↑}g_{↓↓}/g²_{↑↓} makes the system more dilute which in one dimension leads to stronger correlations.
- For g_{σσ} ≫ |g_{↑↓}|, ,the system becomes a gas of ↑↓ dimers.(Mapping with Gaudin-Yang model which has no other BS than ↑↓ dimers.)

Goal

By decreasing the ratio $g_{\uparrow\uparrow}g_{\downarrow\downarrow}/g_{\uparrow\downarrow}^2$:

 \rightarrow Find the line curve in the plane $\{g_{\uparrow\uparrow}/|g_{\uparrow\downarrow}|, g_{\downarrow\downarrow}/|g_{\uparrow\downarrow}|\}$ where the dimer-dimer interaction vanishes $(a_{dd} = \infty)$.

Reminders about 1D systems

2 The Four-Body System

3 Results

Reminders about 1D systems

Two-body scattering theory in 1D

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dx^2} + V(|x|)\right]\Psi(x) = E\Psi(x)$$
(1)

- $|x| \gg R_e \rightarrow \Psi(x) = A\sin(k|x| + \delta(k))$
- δ is the so-called *phase shift*
- k is the relative momentum and verify $E = \hbar^2 k^2 / 2\mu$.

Two-body scattering theory in 1D

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dx^2} + V(|x|)\right]\Psi(x) = E\Psi(x)$$
(1)

- $|x| \gg R_e \rightarrow \Psi(x) = A\sin(k|x| + \delta(k))$
- δ is the so-called *phase shift*
- k is the relative momentum and verify $E = \hbar^2 k^2 / 2\mu$.

Scattering length a

•
$$\lim_{x \to 0} \Psi(x) \propto |x| - a(k)$$
 where $a(k) = -\frac{\sin(\delta)}{k\cos(\delta)}$

• Small momenta $kR_e \ll 1$, we define the scattering length a:

$$a = \lim_{k \to 0} a(k) = \lim_{k \to 0} -\frac{\tan k}{k}$$

• Expansion : $k \cot \delta(k) = -1/a + (r_e/2)k^2 + ...$

Two-body contact interaction

- Short range interactions between particle modeled by a δ -potential such that : $V_{ij}(x) = g_{ij}\delta(x_{ij})$.
- It's the so-called Zero-Range Approximation, valid when $|\lambda_{dB}| \gg R_e$
- One can show with the logarithm derivative of $\Psi_{|0}$ that the constant interaction g_{ij} is related to the scattering length.

$$g_{ij} = -rac{\hbar^2}{\mu a_{ij}}$$

- If $g_{ij} > 0$ one deals with a repulsive potential, whereas for $g_{ij} < 0$ we deal with an attractive potential.
- If $g_{ij} < 0$ a bound state (BS) exists.

$$\Psi_{BS} \propto e^{-|x|/a_{ij}} \qquad E_{BS}(\{m_1, m_2\}, g_{ij}) = -rac{\hbar^2}{2\mu a_{ij}^2}$$

 $\rightarrow a_{ij}$ can be seen as the *size* of the bound state.

The Four-Body system

Schrödinger's equation

Schrödinger's equation

$$\frac{\text{Symmetries } (e_{\sigma\sigma} = \pm 1)}{\Psi(r_1, r_2, R)} = e_{\downarrow\downarrow} \Psi(r_+, r_-, \frac{r_1 - r_2}{\sqrt{2}})$$
$$= e_{\uparrow\uparrow} \Psi(r_-, r_+, \frac{r_2 - r_1}{\sqrt{2}})$$
$$= e_{\uparrow\uparrow} e_{\downarrow\downarrow} \Psi(r_2, r_1, -R)$$

Schrödinger's equation

$$(-\nabla_{\mathbf{X}}^{2} - E)\Psi(r_{1}, r_{2}, R) = [-g_{\uparrow\downarrow}(\delta(r_{1}) + \delta(r_{2}) + \delta(r_{+}) + \delta(r_{-})) - g_{\uparrow\uparrow}\delta(r_{\uparrow\uparrow}) - g_{\downarrow\downarrow}\delta(r_{\downarrow\downarrow})]\Psi(r_{1}, r_{2}, R)$$
(2)

We introduce the function $f_{\uparrow\downarrow}$ which corresponds by definition to the wavefunction Ψ when one pair $\{\uparrow\downarrow\}$ coincide.

$$\lim_{r_1\to 0} \Psi(r_1, r_2, R) = f_{\uparrow\downarrow}(r_2, R)$$
(3)

We do the same for $r_{\uparrow\uparrow}
ightarrow 0$ and then $r_{\downarrow\downarrow}
ightarrow 0$:

$$\lim_{r_{\uparrow\uparrow}\to 0}\Psi(r_1,r_2,R)=f_{\uparrow\uparrow}(r_{\downarrow\downarrow},R_0) \tag{4}$$

$$\lim_{r_{\downarrow\downarrow}\to 0} \Psi(r_1, r_2, R) = f_{\downarrow\downarrow}(r_{\uparrow\uparrow}, R_0)$$
(5)

STM Equation

$$(\mathbf{P}^{2} - E)\tilde{\Psi}(p_{1}, p_{2}, p) = -g_{\uparrow\downarrow}\tilde{f}_{\uparrow\downarrow}(p_{2}, p) - e_{\uparrow\uparrow}e_{\downarrow\downarrow}g_{\uparrow\downarrow}\tilde{f}_{\uparrow\downarrow}(p_{1}, -p)$$

$$-e_{\downarrow\downarrow}g_{\uparrow\downarrow}\tilde{f}_{\uparrow\downarrow}(\frac{p_{1} + p_{2} - \sqrt{2}p}{2}, \frac{p_{1} - p_{2}}{\sqrt{2}})$$

$$-e_{\uparrow\uparrow}g_{\uparrow\downarrow}\tilde{f}_{\uparrow\downarrow}(\frac{p_{1} + p_{2} + \sqrt{2}p}{2}, \frac{p_{2} - p_{1}}{\sqrt{2}})$$

$$-g_{\uparrow\uparrow}\tilde{f}_{\uparrow\uparrow}(\frac{p_{2} - p_{1} + \sqrt{2}p}{2}, \frac{p_{1} + p_{2}}{\sqrt{2}})$$

$$-g_{\downarrow\downarrow}\tilde{f}_{\downarrow\downarrow}(\frac{p_{1} - p_{2} + \sqrt{2}p}{2}, \frac{p_{1} + p_{2}}{\sqrt{2}})$$

$$(6)$$

Where $\mathbf{P} = \{p_1, p_2, p\}$ corresponds to a 3D vector in momentum space. Idea is then to end up with a system of three coupled integral equations for $\{\tilde{f}_{\uparrow\downarrow}, \tilde{f}_{\uparrow\uparrow}, \tilde{f}_{\downarrow\downarrow}\}$ since we can show that :

$$\begin{cases} \tilde{f}_{\uparrow\downarrow}(k,q) = \int \frac{du}{2\pi} \tilde{\Psi}(u,k,q) \\ \tilde{f}_{\uparrow\uparrow}(k,q) = \int \frac{du}{\pi} \tilde{\Psi}(u,\sqrt{2}q - u,\sqrt{2}(k+u) - q) \\ \tilde{f}_{\downarrow\downarrow}(k,q) = \int \frac{du}{\pi} \tilde{\Psi}(u,\sqrt{2}q - u,\sqrt{2}(k-u) + q) \end{cases}$$
(7)

• We fix $g_{\uparrow\downarrow} < 0$ (attractive interspecies).

- The total energy is $E = -2|\epsilon_{\uparrow\downarrow}| + \epsilon_0$, where $\epsilon_{\uparrow\downarrow} = -\hbar^2/ma_{\uparrow\downarrow}^2$ and ϵ_0 is the dimer-dimer collisional energy.
- Starting from gas of dimers $\uparrow\downarrow$ (Yang Gaudin), we decrease the ratio $g_{\uparrow\uparrow}g_{\downarrow\downarrow}/g_{\uparrow\downarrow}^2$ and look at zero-collision d-d energy to extract $a_{dd}/a_{\uparrow\downarrow}$.
- By substituting $\tilde{f}_{\uparrow\downarrow}$ by an appropriate expression, homogeneous STM equation becomes an inhomogeneous equation MX = Y
- Leads to a linear problem that we put on the grid to extract $a_{dd}/a_{\uparrow\downarrow}$.

• We fix $g_{\uparrow\downarrow} < 0$ (attractive interspecies).

- The total energy is $E = -2|\epsilon_{\uparrow\downarrow}| + \epsilon_0$, where $\epsilon_{\uparrow\downarrow} = -\hbar^2/ma_{\uparrow\downarrow}^2$ and ϵ_0 is the dimer-dimer collisional energy.
- Starting from gas of dimers $\uparrow\downarrow$ (Yang Gaudin), we decrease the ratio $g_{\uparrow\uparrow}g_{\downarrow\downarrow}/g_{\uparrow\downarrow}^2$ and look at zero-collision d-d energy to extract $a_{dd}/a_{\uparrow\downarrow}$.
- By substituting $\tilde{f}_{\uparrow\downarrow}$ by an appropriate expression, homogeneous STM equation becomes an inhomogeneous equation MX = Y
- Leads to a linear problem that we put on the grid to extract $a_{dd}/a_{\uparrow\downarrow}$.

Goal reminder

Find the line curve in the plane $\{g_{\uparrow\uparrow}/|g_{\uparrow\downarrow}|, g_{\downarrow\downarrow}/|g_{\uparrow\downarrow}|\}$ where the dimer-dimer interaction vanishes.

Results

Overview of the Bose-Bose mixture in the plane $\{g_{\uparrow\uparrow}/|g_{\uparrow\downarrow}|,g_{\downarrow\downarrow}/|g_{\uparrow\downarrow}|\}$

Overview in symmetric case $(g_{\uparrow\uparrow} = g_{\downarrow\downarrow})$ in function of $\alpha = g_{\uparrow\uparrow}/|g_{\uparrow\downarrow}|$

- Interaction between dimers become attractive when $\alpha < \alpha *$
- 3 known integrable cases : $\alpha \to +\infty$, $\alpha = -1$, $\alpha \to -\infty$

Overview of the dimerized symmetric Bose-Bose mixture in function of α

Discussions

Soliton ?

• Consider $N_d > 2$ dimers close to the dimer-dimer zero crossing line in the attractive regime where $a_{dd} \gg a_{\uparrow\downarrow} \sim r_e$.

Soliton ?

• Consider $N_d > 2$ dimers close to the dimer-dimer zero crossing line in the attractive regime where $a_{dd} \gg a_{\uparrow\downarrow} \sim r_e$.

MF & 3-Body Repulsive Interaction

- <u>Idea</u> : A liquid state which is a result of a competition between twoand three- dimer forces ? ($g_{dd} < 0$ and assume $g_3 > 0$)
- MF (for dimers) treatment (cf. Bulgac) :

$$\epsilon := E_{N_d} / N_d = g_{dd} n_d / 2 + g_3 n_d^2 / 6 \tag{8}$$

- Applicability : Interaction energy shift much smaller than the energy scale $E \sim n_d^2 \rightarrow \{a_{dd}n_d \gg 1 \text{ and } g_3 \ll 1\}$
- Both of these conditions (at n_d^0) lead to $g_3 \ll 1$

• What is this g_3 ?

3-Body in 1D ightarrow 2-Body in 2D , $\Psi_3 \propto \ln(
ho/a_3)$, $a_3 > 0$

• 3-dimer effective potential taken as :

$$g_3 = \frac{\sqrt{3}\pi}{2\ln(2e^{-\gamma}/a_3\kappa)} \tag{9}$$

- κ is the typical momentum of the system
- In the leading order of $g_3 \ll 1$, by assuming that $a_3 \sim a_{\uparrow\downarrow}$, we have in the leading order of g_3 :

$${f g}_3=\sqrt{3}\pi/2{f ln}ig({f a_{dd}}/{f a_{\uparrow\downarrow}}ig)\ll 1$$

 $n_d^0 = (\sqrt{3}/\pi a_{dd}) \ln(a_{dd}/a_{\uparrow\downarrow})$, $\mu = \epsilon = (\sqrt{3}/4\pi a_{dd}^2) \ln(a_{dd}/a_{\uparrow\downarrow})$

• In the region $a_3 \sim a_{\uparrow\downarrow} \ll n_d^{-1}$, precisely $1/\ln(a_{\uparrow\downarrow}n_d) \sim 1/\ln(a_3n_d) \ll 1$

Crossover : Soliton to Liquid Droplet when increasing N_d

- Dimer-dimer effective range correction (per dimer) ?
 - ightarrow Scales as $r_e \epsilon n_d \sim \epsilon g_3^{-1} e^{-\sqrt{3}\pi/2g_3}$ smaller than any powers of g_3
- Case $a_{\uparrow\downarrow} \ll 1/n_d \ll a_3$?
 - \rightarrow Weak 3-body attraction leads to high density phase (cf. Nishida) \rightarrow Solution breaks down for same reasons than soliton.

Conclusion

Summary

1. We derived STM equations for the 4 body-problem in the case of a mixture with intercomponent dimers.

2. We implemented these equations numerically and verify our numerical method in known integrable cases.

3. We calculated the line where the dimer-dimer interaction vanishes (particularly in the Bose symmetric case $\alpha^* = 2.2$ and in the BF case $g_{BB} = 0.575|g_{FB}|$)

4. For a weak dimer-dimer interaction, we predict a dilute dimerized liquid phase stabilized against collapse by a repulsive three-dimer force.

Open questions

Solve the three-dimer problem / Three dimer zero crossing point ? / Liquid density imbalanced / Pentamer ...

Bose-Fermi Mapping

- In 1D, one can map the case of N impenetrable bosons with an ideal Fermi gas of N particles.
- For fermions, thanks to Pauli principle, the wavefunction vanishes with contact of intraspecies.
- For bosons, if we impose an infinite contact repulsion (impenetrable bosons), we reproduce artificially the Pauli principle.

$$\begin{cases} \Psi_B(x_1, x_2, ..., x_n) = A(x_1, ..., x_n) \Psi_F(x_1, x_2, ..., x_n) \\ A(x_1, ..., x_n) = \prod_{i>j} \operatorname{sgn}(x_i - x_j) \end{cases}$$
(10)

 \rightarrow Same characteristic such as energy.

• This mapping has been at center of investigations in 1-dimension, in our case, we will resume this by :

$$\Psi_B, \ g_{\uparrow\uparrow} = g_{\downarrow\downarrow} = +\infty \quad \Leftrightarrow \quad \Psi_F, \ g_{\uparrow\uparrow} = g_{\downarrow\downarrow} = 0$$
(11)

Trimer Threshold

- Let us consider the ↑↑↓ combination (or equivalently, ↓↓↑) and apply STM.
- In the case $g_{\uparrow\downarrow} < 0$, $\uparrow\uparrow\downarrow$ is always bound except in the limit $g_{\uparrow\uparrow} = +\infty$ where $(\epsilon_{\uparrow\uparrow\downarrow} - \epsilon_{\uparrow\downarrow}) = 0$ and a_{ad} diverges.

Trimer Threshold

- Let us consider the ↑↑↓ combination (or equivalently, ↓↓↑) and apply STM.
- In the case $g_{\uparrow\downarrow} < 0$, $\uparrow\uparrow\downarrow$ is always bound except in the limit $g_{\uparrow\uparrow} = +\infty$ where $(\epsilon_{\uparrow\uparrow\downarrow} - \epsilon_{\uparrow\downarrow}) = 0$ and a_{ad} diverges.
- The trimer ↑↑↓ can be formed if

 e_{↑↑↓} < E = −2|e_{↑↓}| for zero dimer-dimer collision energy.

Trimer Threshold

- Let us consider the ↑↑↓ combination (or equivalently, ↓↓↑) and apply STM.
- In the case $g_{\uparrow\downarrow} < 0$, $\uparrow\uparrow\downarrow$ is always bound except in the limit $g_{\uparrow\uparrow} = +\infty$ where $(\epsilon_{\uparrow\uparrow\downarrow} - \epsilon_{\uparrow\downarrow}) = 0$ and a_{ad} diverges.
- The trimer ↑↑↓ can be formed if

 e_{↑↑↓} < E = −2|e_{↑↓}| for zero dimer-dimer collision energy.

$$\epsilon_{\uparrow\uparrow\downarrow} = -2|\epsilon_{\uparrow\downarrow}| \Leftrightarrow g_{\uparrow\uparrow} = 0.0738|g_{\uparrow\downarrow}|$$

- Thanks to the BFM, the case of infinite repulsion between intracomponents lead to study interacting two species Fermi gas.
- Corresponds equivalently in this study to the fermionic case where $g_{\uparrow\uparrow} = g_{\downarrow\downarrow} = 0 \rightarrow \text{We end up with 1 Integral equation.}$
- Four attractively interacting fermions in 1D \rightarrow Integrable case (solved by C. Mora) :
- Scattering properties of the two dimers $(\uparrow\downarrow)$ system are described by the dimer-dimer scattering length a_{dd} .

$$a_{dd} = 0.5 a_{\uparrow\downarrow}$$
 (12)

Case $\alpha \to -\infty$

Intraspecies are infinitely attractive : $g_{\uparrow\uparrow} = g_{\downarrow\downarrow} = -\infty$

 \rightarrow Four-body bound state composed of two intracomponent dimers.

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dx^2} + 4g_{\uparrow\downarrow}\delta(x)\right]\chi_r = E_{BS}\chi_r \tag{13}$$

$$E = -\frac{2}{ma_{\uparrow\uparrow}^2} - E_{BS}(\{2m, 2m\}, g = 4g_{\uparrow\downarrow})$$
(14)

$$\boxed{E/|\epsilon_{\uparrow\downarrow}| = -2\alpha^2 - 32} \tag{15}$$

$\mathsf{Case}\ \alpha = -1$

- Known as Lieb-Liniger / Mc Guire model
- Take N as the arbitrary number of particles of equal masses M all interacting via one another via equal strength δ -function potentials.

$$\left[-\frac{\hbar^2}{2M}\sum_{i=1}^N \frac{d^2}{dx_i^2} + C\sum_{i>j}\sum_{j=1}^N \delta(x_i - x_j)\right]\Psi = E\Psi$$
(16)

• We put $\hbar = M = 1$ and $g = -\sqrt{2}C$ and consider the case of a δ -attractive potential between particles. We end up with the energy of the N-body bound state :

$$E = -\frac{g^2}{48}N(N^2 - 1)$$
 (17)

In our units for our four-body problem :

$$E(N=4) = -10|\epsilon_{\uparrow\downarrow}|$$
(18)

• Appearance of a weakly bound four-body bound state :

$$E = -\frac{2}{ma_{\uparrow\downarrow}^2} - E_{BS}(\{2m, 2m\}, g_{dd})$$

• Where g_{dd} is the strength of interaction between the two intercomponent dimers and which verify $g_{dd} = -1/a_{dd}$.

$$E/|\epsilon_{\uparrow\downarrow}| = -2 - \frac{a_{\uparrow\downarrow}^2}{a_{dd}^2}$$
(19)

• One can interest to the function A defined by :

$$A(\alpha) = \sqrt{2} \sqrt{\frac{E}{\epsilon_{\uparrow\downarrow}} - 2} \underset{\alpha \simeq \alpha^*}{=} \frac{a_{\uparrow\downarrow}}{a_{dd}}$$
(20)

• $A(\alpha^*)$ passes through zero when a_{dd} diverge, namely for the ratio α^* of the gas-liquid transition :

$$A(\alpha^*) = 0 \Leftrightarrow a_{dd} = \infty \Leftrightarrow g_{dd} = 0 \qquad (21)_{31}$$